Serveur d'exploration sur les récepteurs immunitaires végétaux

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Pathogen-Associated Molecular Pattern-Induced TLR2 and TLR4 Activation Increases Keratinocyte Production of Inflammatory Mediators and is Inhibited by Phosphatidylglycerol.

Identifieur interne : 000090 ( Main/Exploration ); précédent : 000089; suivant : 000091

Pathogen-Associated Molecular Pattern-Induced TLR2 and TLR4 Activation Increases Keratinocyte Production of Inflammatory Mediators and is Inhibited by Phosphatidylglycerol.

Auteurs : Vivek Choudhary [Géorgie (pays)] ; Shantelle Griffith [Géorgie (pays)] ; Xunsheng Chen [Géorgie (pays)] ; Wendy B. Bollag [États-Unis]

Source :

RBID : pubmed:32173651

Descripteurs français

English descriptors

Abstract

Skin serves not only as a protective barrier to microbial entry into the body but also as an immune organ. The outer layer, the epidermis, is composed predominantly of keratinocytes, which can be stimulated to produce proinflammatory mediators. Although some inflammation is useful to defend against infection, excessive or persistent inflammation can lead to the development of inflammatory skin diseases, such as psoriasis, a common skin disorder affecting approximately 2% of the US population. We have previously found that phosphatidylglycerol (PG) derived from soy can inhibit inflammation in a contact irritant ear edema mouse model. Here, we investigated the ability of soy PG to inhibit inflammatory mediator expression in response to activators of the pattern recognition receptors, toll-like receptor-2 (TLR2) and -4 (TLR4). We found that in epidermal keratinocytes, soy PG inhibited TLR2 and TLR4 activation and inflammatory mediator expression in response to a synthetic triacylated lipopeptide and lipopolysaccharide, respectively, as well as an endogenous danger-associated molecular pattern. However, at higher concentrations, soy PG alone enhanced the expression of some proinflammatory cytokines, suggesting a narrow therapeutic window for this lipid. Dioleoylphosphatidylglycerol (DOPG), but not dioleoylphosphatidylcholine, exerted a similar inhibitory effect, completely blocking keratinocyte inflammatory mediator expression induced by TLR2 and TLR4 activators as well as NFκB activation in a macrophage cell line (RAW264.7); however, DOPG was not itself proinflammatory even at high concentrations. Furthermore, DOPG had no effect on NFκB activation in response to a TLR7/8 agonist. Our results suggest that DOPG could be used to inhibit excessive skin inflammation. SIGNIFICANCE STATEMENT: Although inflammation is beneficial for clearing an infection, in some cases, the infection can be excessive and/or become chronic, thereby resulting in considerable tissue damage and pathological conditions. We show here that the phospholipid phosphatidylglycerol can inhibit the activation of toll-like receptors 2 and 4 of the innate immune system as well as the downstream inflammatory mediator expression in response to microbial component-mimicking agents in epidermal keratinocytes that form the physical barrier of the skin.

DOI: 10.1124/mol.119.118166
PubMed: 32173651
PubMed Central: PMC7174787


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Pathogen-Associated Molecular Pattern-Induced TLR2 and TLR4 Activation Increases Keratinocyte Production of Inflammatory Mediators and is Inhibited by Phosphatidylglycerol.</title>
<author>
<name sortKey="Choudhary, Vivek" sort="Choudhary, Vivek" uniqKey="Choudhary V" first="Vivek" last="Choudhary">Vivek Choudhary</name>
<affiliation wicri:level="1">
<nlm:affiliation>Charlie Norwood VA Medical Center, One Freedom Way, Augusta, Georgia (V.C., W.B.B.); and Departments of Physiology (V.C., S.G., X.C., W.B.B.) and Dermatology (W.B.B.), Medical College of Georgia at Augusta University, Augusta, Georgia.</nlm:affiliation>
<country xml:lang="fr">Géorgie (pays)</country>
<wicri:regionArea>Charlie Norwood VA Medical Center, One Freedom Way, Augusta, Georgia (V.C., W.B.B.); and Departments of Physiology (V.C., S.G., X.C., W.B.B.) and Dermatology (W.B.B.), Medical College of Georgia at Augusta University, Augusta</wicri:regionArea>
<wicri:noRegion>Augusta</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Griffith, Shantelle" sort="Griffith, Shantelle" uniqKey="Griffith S" first="Shantelle" last="Griffith">Shantelle Griffith</name>
<affiliation wicri:level="1">
<nlm:affiliation>Charlie Norwood VA Medical Center, One Freedom Way, Augusta, Georgia (V.C., W.B.B.); and Departments of Physiology (V.C., S.G., X.C., W.B.B.) and Dermatology (W.B.B.), Medical College of Georgia at Augusta University, Augusta, Georgia.</nlm:affiliation>
<country xml:lang="fr">Géorgie (pays)</country>
<wicri:regionArea>Charlie Norwood VA Medical Center, One Freedom Way, Augusta, Georgia (V.C., W.B.B.); and Departments of Physiology (V.C., S.G., X.C., W.B.B.) and Dermatology (W.B.B.), Medical College of Georgia at Augusta University, Augusta</wicri:regionArea>
<wicri:noRegion>Augusta</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chen, Xunsheng" sort="Chen, Xunsheng" uniqKey="Chen X" first="Xunsheng" last="Chen">Xunsheng Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Charlie Norwood VA Medical Center, One Freedom Way, Augusta, Georgia (V.C., W.B.B.); and Departments of Physiology (V.C., S.G., X.C., W.B.B.) and Dermatology (W.B.B.), Medical College of Georgia at Augusta University, Augusta, Georgia.</nlm:affiliation>
<country xml:lang="fr">Géorgie (pays)</country>
<wicri:regionArea>Charlie Norwood VA Medical Center, One Freedom Way, Augusta, Georgia (V.C., W.B.B.); and Departments of Physiology (V.C., S.G., X.C., W.B.B.) and Dermatology (W.B.B.), Medical College of Georgia at Augusta University, Augusta</wicri:regionArea>
<wicri:noRegion>Augusta</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bollag, Wendy B" sort="Bollag, Wendy B" uniqKey="Bollag W" first="Wendy B" last="Bollag">Wendy B. Bollag</name>
<affiliation wicri:level="1">
<nlm:affiliation>Charlie Norwood VA Medical Center, One Freedom Way, Augusta, Georgia (V.C., W.B.B.); and Departments of Physiology (V.C., S.G., X.C., W.B.B.) and Dermatology (W.B.B.), Medical College of Georgia at Augusta University, Augusta, Georgia wbollag@augusta.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Charlie Norwood VA Medical Center, One Freedom Way, Augusta, Georgia (V.C., W.B.B.); and Departments of Physiology (V.C., S.G., X.C., W.B.B.) and Dermatology (W.B.B.), Medical College of Georgia at Augusta University, Augusta</wicri:regionArea>
<wicri:noRegion>Augusta</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32173651</idno>
<idno type="pmid">32173651</idno>
<idno type="doi">10.1124/mol.119.118166</idno>
<idno type="pmc">PMC7174787</idno>
<idno type="wicri:Area/Main/Corpus">000190</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000190</idno>
<idno type="wicri:Area/Main/Curation">000190</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000190</idno>
<idno type="wicri:Area/Main/Exploration">000190</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Pathogen-Associated Molecular Pattern-Induced TLR2 and TLR4 Activation Increases Keratinocyte Production of Inflammatory Mediators and is Inhibited by Phosphatidylglycerol.</title>
<author>
<name sortKey="Choudhary, Vivek" sort="Choudhary, Vivek" uniqKey="Choudhary V" first="Vivek" last="Choudhary">Vivek Choudhary</name>
<affiliation wicri:level="1">
<nlm:affiliation>Charlie Norwood VA Medical Center, One Freedom Way, Augusta, Georgia (V.C., W.B.B.); and Departments of Physiology (V.C., S.G., X.C., W.B.B.) and Dermatology (W.B.B.), Medical College of Georgia at Augusta University, Augusta, Georgia.</nlm:affiliation>
<country xml:lang="fr">Géorgie (pays)</country>
<wicri:regionArea>Charlie Norwood VA Medical Center, One Freedom Way, Augusta, Georgia (V.C., W.B.B.); and Departments of Physiology (V.C., S.G., X.C., W.B.B.) and Dermatology (W.B.B.), Medical College of Georgia at Augusta University, Augusta</wicri:regionArea>
<wicri:noRegion>Augusta</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Griffith, Shantelle" sort="Griffith, Shantelle" uniqKey="Griffith S" first="Shantelle" last="Griffith">Shantelle Griffith</name>
<affiliation wicri:level="1">
<nlm:affiliation>Charlie Norwood VA Medical Center, One Freedom Way, Augusta, Georgia (V.C., W.B.B.); and Departments of Physiology (V.C., S.G., X.C., W.B.B.) and Dermatology (W.B.B.), Medical College of Georgia at Augusta University, Augusta, Georgia.</nlm:affiliation>
<country xml:lang="fr">Géorgie (pays)</country>
<wicri:regionArea>Charlie Norwood VA Medical Center, One Freedom Way, Augusta, Georgia (V.C., W.B.B.); and Departments of Physiology (V.C., S.G., X.C., W.B.B.) and Dermatology (W.B.B.), Medical College of Georgia at Augusta University, Augusta</wicri:regionArea>
<wicri:noRegion>Augusta</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chen, Xunsheng" sort="Chen, Xunsheng" uniqKey="Chen X" first="Xunsheng" last="Chen">Xunsheng Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Charlie Norwood VA Medical Center, One Freedom Way, Augusta, Georgia (V.C., W.B.B.); and Departments of Physiology (V.C., S.G., X.C., W.B.B.) and Dermatology (W.B.B.), Medical College of Georgia at Augusta University, Augusta, Georgia.</nlm:affiliation>
<country xml:lang="fr">Géorgie (pays)</country>
<wicri:regionArea>Charlie Norwood VA Medical Center, One Freedom Way, Augusta, Georgia (V.C., W.B.B.); and Departments of Physiology (V.C., S.G., X.C., W.B.B.) and Dermatology (W.B.B.), Medical College of Georgia at Augusta University, Augusta</wicri:regionArea>
<wicri:noRegion>Augusta</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bollag, Wendy B" sort="Bollag, Wendy B" uniqKey="Bollag W" first="Wendy B" last="Bollag">Wendy B. Bollag</name>
<affiliation wicri:level="1">
<nlm:affiliation>Charlie Norwood VA Medical Center, One Freedom Way, Augusta, Georgia (V.C., W.B.B.); and Departments of Physiology (V.C., S.G., X.C., W.B.B.) and Dermatology (W.B.B.), Medical College of Georgia at Augusta University, Augusta, Georgia wbollag@augusta.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Charlie Norwood VA Medical Center, One Freedom Way, Augusta, Georgia (V.C., W.B.B.); and Departments of Physiology (V.C., S.G., X.C., W.B.B.) and Dermatology (W.B.B.), Medical College of Georgia at Augusta University, Augusta</wicri:regionArea>
<wicri:noRegion>Augusta</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Molecular pharmacology</title>
<idno type="eISSN">1521-0111</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Calgranulin B (pharmacology)</term>
<term>Humans (MeSH)</term>
<term>Imidazoles (pharmacology)</term>
<term>Inflammation Mediators (metabolism)</term>
<term>Keratinocytes (metabolism)</term>
<term>Lipopeptides (pharmacology)</term>
<term>Lipopolysaccharides (pharmacology)</term>
<term>Macrophages (drug effects)</term>
<term>Macrophages (metabolism)</term>
<term>Mice (MeSH)</term>
<term>NF-kappa B (metabolism)</term>
<term>Pathogen-Associated Molecular Pattern Molecules (pharmacology)</term>
<term>Phosphatidylglycerols (pharmacology)</term>
<term>RAW 264.7 Cells (MeSH)</term>
<term>Receptors, Pattern Recognition (metabolism)</term>
<term>Recombinant Proteins (pharmacology)</term>
<term>Soybeans (chemistry)</term>
<term>Toll-Like Receptor 2 (metabolism)</term>
<term>Toll-Like Receptor 4 (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Calgranuline B (pharmacologie)</term>
<term>Cellules RAW 264.7 (MeSH)</term>
<term>Facteur de transcription NF-kappa B (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Imidazoles (pharmacologie)</term>
<term>Kératinocytes (métabolisme)</term>
<term>Lipopeptides (pharmacologie)</term>
<term>Lipopolysaccharides (pharmacologie)</term>
<term>Macrophages (effets des médicaments et des substances chimiques)</term>
<term>Macrophages (métabolisme)</term>
<term>Molécules contenant des motifs associés aux pathogènes (pharmacologie)</term>
<term>Médiateurs de l'inflammation (métabolisme)</term>
<term>Phosphatidylglycérol (pharmacologie)</term>
<term>Protéines recombinantes (pharmacologie)</term>
<term>Récepteur de type Toll-2 (métabolisme)</term>
<term>Récepteur de type Toll-4 (métabolisme)</term>
<term>Récepteurs de reconnaissance de motifs moléculaires (métabolisme)</term>
<term>Soja (composition chimique)</term>
<term>Souris (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Inflammation Mediators</term>
<term>NF-kappa B</term>
<term>Receptors, Pattern Recognition</term>
<term>Toll-Like Receptor 2</term>
<term>Toll-Like Receptor 4</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Calgranulin B</term>
<term>Imidazoles</term>
<term>Lipopeptides</term>
<term>Lipopolysaccharides</term>
<term>Pathogen-Associated Molecular Pattern Molecules</term>
<term>Phosphatidylglycerols</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Soybeans</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Soja</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Macrophages</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Macrophages</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Keratinocytes</term>
<term>Macrophages</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Facteur de transcription NF-kappa B</term>
<term>Kératinocytes</term>
<term>Macrophages</term>
<term>Médiateurs de l'inflammation</term>
<term>Récepteur de type Toll-2</term>
<term>Récepteur de type Toll-4</term>
<term>Récepteurs de reconnaissance de motifs moléculaires</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Calgranuline B</term>
<term>Imidazoles</term>
<term>Lipopeptides</term>
<term>Lipopolysaccharides</term>
<term>Molécules contenant des motifs associés aux pathogènes</term>
<term>Phosphatidylglycérol</term>
<term>Protéines recombinantes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Humans</term>
<term>Mice</term>
<term>RAW 264.7 Cells</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Cellules RAW 264.7</term>
<term>Humains</term>
<term>Souris</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Skin serves not only as a protective barrier to microbial entry into the body but also as an immune organ. The outer layer, the epidermis, is composed predominantly of keratinocytes, which can be stimulated to produce proinflammatory mediators. Although some inflammation is useful to defend against infection, excessive or persistent inflammation can lead to the development of inflammatory skin diseases, such as psoriasis, a common skin disorder affecting approximately 2% of the US population. We have previously found that phosphatidylglycerol (PG) derived from soy can inhibit inflammation in a contact irritant ear edema mouse model. Here, we investigated the ability of soy PG to inhibit inflammatory mediator expression in response to activators of the pattern recognition receptors, toll-like receptor-2 (TLR2) and -4 (TLR4). We found that in epidermal keratinocytes, soy PG inhibited TLR2 and TLR4 activation and inflammatory mediator expression in response to a synthetic triacylated lipopeptide and lipopolysaccharide, respectively, as well as an endogenous danger-associated molecular pattern. However, at higher concentrations, soy PG alone enhanced the expression of some proinflammatory cytokines, suggesting a narrow therapeutic window for this lipid. Dioleoylphosphatidylglycerol (DOPG), but not dioleoylphosphatidylcholine, exerted a similar inhibitory effect, completely blocking keratinocyte inflammatory mediator expression induced by TLR2 and TLR4 activators as well as NF
<i>κ</i>
B activation in a macrophage cell line (RAW264.7); however, DOPG was not itself proinflammatory even at high concentrations. Furthermore, DOPG had no effect on NF
<i>κ</i>
B activation in response to a TLR7/8 agonist. Our results suggest that DOPG could be used to inhibit excessive skin inflammation. SIGNIFICANCE STATEMENT: Although inflammation is beneficial for clearing an infection, in some cases, the infection can be excessive and/or become chronic, thereby resulting in considerable tissue damage and pathological conditions. We show here that the phospholipid phosphatidylglycerol can inhibit the activation of toll-like receptors 2 and 4 of the innate immune system as well as the downstream inflammatory mediator expression in response to microbial component-mimicking agents in epidermal keratinocytes that form the physical barrier of the skin.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32173651</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>04</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>05</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1521-0111</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>97</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2020</Year>
<Month>05</Month>
</PubDate>
</JournalIssue>
<Title>Molecular pharmacology</Title>
<ISOAbbreviation>Mol Pharmacol</ISOAbbreviation>
</Journal>
<ArticleTitle>Pathogen-Associated Molecular Pattern-Induced TLR2 and TLR4 Activation Increases Keratinocyte Production of Inflammatory Mediators and is Inhibited by Phosphatidylglycerol.</ArticleTitle>
<Pagination>
<MedlinePgn>324-335</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1124/mol.119.118166</ELocationID>
<Abstract>
<AbstractText>Skin serves not only as a protective barrier to microbial entry into the body but also as an immune organ. The outer layer, the epidermis, is composed predominantly of keratinocytes, which can be stimulated to produce proinflammatory mediators. Although some inflammation is useful to defend against infection, excessive or persistent inflammation can lead to the development of inflammatory skin diseases, such as psoriasis, a common skin disorder affecting approximately 2% of the US population. We have previously found that phosphatidylglycerol (PG) derived from soy can inhibit inflammation in a contact irritant ear edema mouse model. Here, we investigated the ability of soy PG to inhibit inflammatory mediator expression in response to activators of the pattern recognition receptors, toll-like receptor-2 (TLR2) and -4 (TLR4). We found that in epidermal keratinocytes, soy PG inhibited TLR2 and TLR4 activation and inflammatory mediator expression in response to a synthetic triacylated lipopeptide and lipopolysaccharide, respectively, as well as an endogenous danger-associated molecular pattern. However, at higher concentrations, soy PG alone enhanced the expression of some proinflammatory cytokines, suggesting a narrow therapeutic window for this lipid. Dioleoylphosphatidylglycerol (DOPG), but not dioleoylphosphatidylcholine, exerted a similar inhibitory effect, completely blocking keratinocyte inflammatory mediator expression induced by TLR2 and TLR4 activators as well as NF
<i>κ</i>
B activation in a macrophage cell line (RAW264.7); however, DOPG was not itself proinflammatory even at high concentrations. Furthermore, DOPG had no effect on NF
<i>κ</i>
B activation in response to a TLR7/8 agonist. Our results suggest that DOPG could be used to inhibit excessive skin inflammation. SIGNIFICANCE STATEMENT: Although inflammation is beneficial for clearing an infection, in some cases, the infection can be excessive and/or become chronic, thereby resulting in considerable tissue damage and pathological conditions. We show here that the phospholipid phosphatidylglycerol can inhibit the activation of toll-like receptors 2 and 4 of the innate immune system as well as the downstream inflammatory mediator expression in response to microbial component-mimicking agents in epidermal keratinocytes that form the physical barrier of the skin.</AbstractText>
<CopyrightInformation>Copyright © 2020 by The American Society for Pharmacology and Experimental Therapeutics.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Choudhary</LastName>
<ForeName>Vivek</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>Charlie Norwood VA Medical Center, One Freedom Way, Augusta, Georgia (V.C., W.B.B.); and Departments of Physiology (V.C., S.G., X.C., W.B.B.) and Dermatology (W.B.B.), Medical College of Georgia at Augusta University, Augusta, Georgia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Griffith</LastName>
<ForeName>Shantelle</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Charlie Norwood VA Medical Center, One Freedom Way, Augusta, Georgia (V.C., W.B.B.); and Departments of Physiology (V.C., S.G., X.C., W.B.B.) and Dermatology (W.B.B.), Medical College of Georgia at Augusta University, Augusta, Georgia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Xunsheng</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Charlie Norwood VA Medical Center, One Freedom Way, Augusta, Georgia (V.C., W.B.B.); and Departments of Physiology (V.C., S.G., X.C., W.B.B.) and Dermatology (W.B.B.), Medical College of Georgia at Augusta University, Augusta, Georgia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bollag</LastName>
<ForeName>Wendy B</ForeName>
<Initials>WB</Initials>
<AffiliationInfo>
<Affiliation>Charlie Norwood VA Medical Center, One Freedom Way, Augusta, Georgia (V.C., W.B.B.); and Departments of Physiology (V.C., S.G., X.C., W.B.B.) and Dermatology (W.B.B.), Medical College of Georgia at Augusta University, Augusta, Georgia wbollag@augusta.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>I01 CX001357</GrantID>
<Acronym>CX</Acronym>
<Agency>CSRD VA</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>03</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Pharmacol</MedlineTA>
<NlmUniqueID>0035623</NlmUniqueID>
<ISSNLinking>0026-895X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D040502">Calgranulin B</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007093">Imidazoles</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018836">Inflammation Mediators</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D055666">Lipopeptides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008070">Lipopolysaccharides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016328">NF-kappa B</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C508075">Pam(3)CSK(4) peptide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000069452">Pathogen-Associated Molecular Pattern Molecules</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010715">Phosphatidylglycerols</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051192">Receptors, Pattern Recognition</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051195">Toll-Like Receptor 2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051197">Toll-Like Receptor 4</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>66322-31-4</RegistryNumber>
<NameOfSubstance UI="C051388">1,2-dioleoyl-sn-glycero-3-phosphoglycerol</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>V3DMU7PVXF</RegistryNumber>
<NameOfSubstance UI="C402365">resiquimod</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="ErratumIn">
<RefSource>Mol Pharmacol. 2020 May;97(5):354</RefSource>
<PMID Version="1">32299958</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040502" MajorTopicYN="N">Calgranulin B</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007093" MajorTopicYN="N">Imidazoles</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018836" MajorTopicYN="N">Inflammation Mediators</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015603" MajorTopicYN="N">Keratinocytes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055666" MajorTopicYN="N">Lipopeptides</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008070" MajorTopicYN="N">Lipopolysaccharides</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008264" MajorTopicYN="N">Macrophages</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016328" MajorTopicYN="N">NF-kappa B</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000069452" MajorTopicYN="N">Pathogen-Associated Molecular Pattern Molecules</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010715" MajorTopicYN="N">Phosphatidylglycerols</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000067996" MajorTopicYN="N">RAW 264.7 Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051192" MajorTopicYN="N">Receptors, Pattern Recognition</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011994" MajorTopicYN="N">Recombinant Proteins</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013025" MajorTopicYN="N">Soybeans</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051195" MajorTopicYN="N">Toll-Like Receptor 2</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051197" MajorTopicYN="N">Toll-Like Receptor 4</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>08</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>02</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>3</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>4</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>3</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32173651</ArticleId>
<ArticleId IdType="pii">mol.119.118166</ArticleId>
<ArticleId IdType="doi">10.1124/mol.119.118166</ArticleId>
<ArticleId IdType="pmc">PMC7174787</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Arch Biochem Biophys. 2011 Apr 15;508(2):138-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21276418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 May 26;11(5):e0156377</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27228163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mediators Inflamm. 2005 Oct 24;2005(5):273-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16258194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2003 Dec 7;1643(1-3):25-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14654225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pharmacol Exp Ther. 2015 Jan;352(1):90-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25332455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Invest Dermatol. 2019 Apr;139(4):868-877</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30391260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Mar 11;286(10):7841-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21205826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Lipid Res. 2013 Aug;54(8):2133-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23749985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Invest Dermatol. 1993 Mar;100(3):240-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8440894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>An Bras Dermatol. 2012 Sep-Oct;87(5):673-81; quiz 682-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23044557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Sep 18;284(38):25488-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19584052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int Immunopharmacol. 2010 Jan;10(1):98-106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19840871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2011 Apr 1;186(7):4481-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21346238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Cancer. 2006 Apr;42(6):735-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16527478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Leukoc Biol. 2013 Nov;94(5):885-902</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23990624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Immunol. 2019 Jul 26;10:1764</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31402919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2002 Jun 20;21(27):4266-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12082614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Respirology. 2006 Jan;11 Suppl:S2-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16423264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Sep 18;9(9):e107119</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25233484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Invest Dermatol. 2003 Dec;121(6):1487-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14675200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Inflam. 2012;2012:819467</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22229105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Invest Dermatol. 2011 Jul;131(7):1547-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21412260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Lipid Res. 2016 Jun;57(6):993-1005</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27095543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Feb 19;274(8):4663-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9988703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Invest Dermatol. 2015 Feb;135(2):499-507</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25233074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Acad Dermatol. 1999 Sep;41(3 Pt 1):401-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10459113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Invest Dermatol. 2007 Dec;127(12):2823-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17597824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Crit Care Med. 2003 Sep 15;168(6):692-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12882758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int Immunol. 2003 Jun;15(6):721-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12750356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Immunol. 2019 Jul 02;10:433</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31312197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Investig Dermatol Symp Proc. 2004 Mar;9(2):136-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15083780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Biol Ther. 2005 Sep;4(9):998-1005</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16082188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pharmacol Exp Ther. 2018 Jul;366(1):1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29695409</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Géorgie (pays)</li>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="Géorgie (pays)">
<noRegion>
<name sortKey="Choudhary, Vivek" sort="Choudhary, Vivek" uniqKey="Choudhary V" first="Vivek" last="Choudhary">Vivek Choudhary</name>
</noRegion>
<name sortKey="Chen, Xunsheng" sort="Chen, Xunsheng" uniqKey="Chen X" first="Xunsheng" last="Chen">Xunsheng Chen</name>
<name sortKey="Griffith, Shantelle" sort="Griffith, Shantelle" uniqKey="Griffith S" first="Shantelle" last="Griffith">Shantelle Griffith</name>
</country>
<country name="États-Unis">
<noRegion>
<name sortKey="Bollag, Wendy B" sort="Bollag, Wendy B" uniqKey="Bollag W" first="Wendy B" last="Bollag">Wendy B. Bollag</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantImRecepV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000090 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000090 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantImRecepV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32173651
   |texte=   Pathogen-Associated Molecular Pattern-Induced TLR2 and TLR4 Activation Increases Keratinocyte Production of Inflammatory Mediators and is Inhibited by Phosphatidylglycerol.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32173651" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantImRecepV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 12:33:18 2020. Site generation: Sat Nov 21 12:33:47 2020